Source code for pyhealth.models.retain

from typing import Dict, List, Optional, Tuple

import torch
import torch.nn as nn
import torch.nn.utils.rnn as rnn_utils

from pyhealth.datasets import SampleEHRDataset
from pyhealth.models import BaseModel

# VALID_OPERATION_LEVEL = ["visit", "event"]


[docs]class RETAINLayer(nn.Module): """RETAIN layer. Paper: Edward Choi et al. RETAIN: An Interpretable Predictive Model for Healthcare using Reverse Time Attention Mechanism. NIPS 2016. This layer is used in the RETAIN model. But it can also be used as a standalone layer. Args: feature_size: the hidden feature size. dropout: dropout rate. Default is 0.5. Examples: >>> from pyhealth.models import RETAINLayer >>> input = torch.randn(3, 128, 64) # [batch size, sequence len, feature_size] >>> layer = RETAINLayer(64) >>> c = layer(input) >>> c.shape torch.Size([3, 64]) """ def __init__( self, feature_size: int, dropout: float = 0.5, ): super(RETAINLayer, self).__init__() self.feature_size = feature_size self.dropout = dropout self.dropout_layer = nn.Dropout(p=self.dropout) self.alpha_gru = nn.GRU(feature_size, feature_size, batch_first=True) self.beta_gru = nn.GRU(feature_size, feature_size, batch_first=True) self.alpha_li = nn.Linear(feature_size, 1) self.beta_li = nn.Linear(feature_size, feature_size)
[docs] @staticmethod def reverse_x(input, lengths): """Reverses the input.""" reversed_input = input.new(input.size()) for i, length in enumerate(lengths): reversed_input[i, :length] = input[i, :length].flip(dims=[0]) return reversed_input
[docs] def compute_alpha(self, rx, lengths): """Computes alpha attention.""" rx = rnn_utils.pack_padded_sequence( rx, lengths, batch_first=True, enforce_sorted=False ) g, _ = self.alpha_gru(rx) g, _ = rnn_utils.pad_packed_sequence(g, batch_first=True) attn_alpha = torch.softmax(self.alpha_li(g), dim=1) return attn_alpha
[docs] def compute_beta(self, rx, lengths): """Computes beta attention.""" rx = rnn_utils.pack_padded_sequence( rx, lengths, batch_first=True, enforce_sorted=False ) h, _ = self.beta_gru(rx) h, _ = rnn_utils.pad_packed_sequence(h, batch_first=True) attn_beta = torch.tanh(self.beta_li(h)) return attn_beta
[docs] def forward( self, x: torch.tensor, mask: Optional[torch.tensor] = None, ) -> Tuple[torch.tensor, torch.tensor]: """Forward propagation. Args: x: a tensor of shape [batch size, sequence len, feature_size]. mask: an optional tensor of shape [batch size, sequence len], where 1 indicates valid and 0 indicates invalid. Returns: c: a tensor of shape [batch size, feature_size] representing the context vector. """ # rnn will only apply dropout between layers x = self.dropout_layer(x) batch_size = x.size(0) if mask is None: lengths = torch.full( size=(batch_size,), fill_value=x.size(1), dtype=torch.int64 ) else: lengths = torch.sum(mask.int(), dim=-1).cpu() rx = self.reverse_x(x, lengths) attn_alpha = self.compute_alpha(rx, lengths) attn_beta = self.compute_beta(rx, lengths) c = attn_alpha * attn_beta * x # (patient, sequence len, feature_size) c = torch.sum(c, dim=1) # (patient, feature_size) return c
[docs]class RETAIN(BaseModel): """RETAIN model. Paper: Edward Choi et al. RETAIN: An Interpretable Predictive Model for Healthcare using Reverse Time Attention Mechanism. NIPS 2016. Note: We use separate Retain layers for different feature_keys. Currentluy, we automatically support different input formats: - code based input (need to use the embedding table later) - float/int based value input We follow the current convention for the Retain model: - case 1. [code1, code2, code3, ...] - we will assume the code follows the order; our model will encode each code into a vector and apply Retain on the code level - case 2. [[code1, code2]] or [[code1, code2], [code3, code4, code5], ...] - we will assume the inner bracket follows the order; our model first use the embedding table to encode each code into a vector and then use average/mean pooling to get one vector for one inner bracket; then use Retain one the braket level - case 3. [[1.5, 2.0, 0.0]] or [[1.5, 2.0, 0.0], [8, 1.2, 4.5], ...] - this case only makes sense when each inner bracket has the same length; we assume each dimension has the same meaning; we run Retain directly on the inner bracket level, similar to case 1 after embedding table - case 4. [[[1.5, 2.0, 0.0]]] or [[[1.5, 2.0, 0.0], [8, 1.2, 4.5]], ...] - this case only makes sense when each inner bracket has the same length; we assume each dimension has the same meaning; we run Retain directly on the inner bracket level, similar to case 2 after embedding table Args: dataset: the dataset to train the model. It is used to query certain information such as the set of all tokens. feature_keys: list of keys in samples to use as features, e.g. ["conditions", "procedures"]. label_key: key in samples to use as label (e.g., "drugs"). mode: one of "binary", "multiclass", or "multilabel". embedding_dim: the embedding dimension. Default is 128. **kwargs: other parameters for the RETAIN layer. Examples: >>> from pyhealth.datasets import SampleEHRDataset >>> samples = [ ... { ... "patient_id": "patient-0", ... "visit_id": "visit-0", ... "list_codes": ["505800458", "50580045810", "50580045811"], # NDC ... "list_vectors": [[1.0, 2.55, 3.4], [4.1, 5.5, 6.0]], ... "list_list_codes": [["A05B", "A05C", "A06A"], ["A11D", "A11E"]], # ATC-4 ... "list_list_vectors": [ ... [[1.8, 2.25, 3.41], [4.50, 5.9, 6.0]], ... [[7.7, 8.5, 9.4]], ... ], ... "label": 1, ... }, ... { ... "patient_id": "patient-0", ... "visit_id": "visit-1", ... "list_codes": [ ... "55154191800", ... "551541928", ... "55154192800", ... "705182798", ... "70518279800", ... ], ... "list_vectors": [[1.4, 3.2, 3.5], [4.1, 5.9, 1.7], [4.5, 5.9, 1.7]], ... "list_list_codes": [["A04A", "B035", "C129"]], ... "list_list_vectors": [ ... [[1.0, 2.8, 3.3], [4.9, 5.0, 6.6], [7.7, 8.4, 1.3], [7.7, 8.4, 1.3]], ... ], ... "label": 0, ... }, ... ] >>> dataset = SampleEHRDataset(samples=samples, dataset_name="test") >>> >>> from pyhealth.models import RETAIN >>> model = RETAIN( ... dataset=dataset, ... feature_keys=[ ... "list_codes", ... "list_vectors", ... "list_list_codes", ... "list_list_vectors", ... ], ... label_key="label", ... mode="binary", ... ) >>> >>> from pyhealth.datasets import get_dataloader >>> train_loader = get_dataloader(dataset, batch_size=2, shuffle=True) >>> data_batch = next(iter(train_loader)) >>> >>> ret = model(**data_batch) >>> print(ret) { 'loss': tensor(0.5640, grad_fn=<BinaryCrossEntropyWithLogitsBackward0>), 'y_prob': tensor([[0.5325], [0.3922]], grad_fn=<SigmoidBackward0>), 'y_true': tensor([[1.], [0.]]), 'logit': tensor([[ 0.1303], [-0.4382]], grad_fn=<AddmmBackward0>) } >>> """ def __init__( self, dataset: SampleEHRDataset, feature_keys: List[str], label_key: str, mode: str, pretrained_emb: str = None, embedding_dim: int = 128, **kwargs, ): super(RETAIN, self).__init__( dataset=dataset, feature_keys=feature_keys, label_key=label_key, mode=mode, pretrained_emb=pretrained_emb, ) self.embedding_dim = embedding_dim # validate kwargs for RETAIN layer if "feature_size" in kwargs: raise ValueError("feature_size is determined by embedding_dim") # the key of self.feat_tokenizers only contains the code based inputs self.feat_tokenizers = {} self.label_tokenizer = self.get_label_tokenizer() # the key of self.embeddings only contains the code based inputs self.embeddings = nn.ModuleDict() # the key of self.linear_layers only contains the float/int based inputs self.linear_layers = nn.ModuleDict() # add feature RETAIN layers for feature_key in self.feature_keys: input_info = self.dataset.input_info[feature_key] # sanity check if input_info["type"] not in [str, float, int]: raise ValueError( "RETAIN only supports str code, float and int as input types" ) elif (input_info["type"] == str) and (input_info["dim"] not in [2, 3]): raise ValueError( "RETAIN only supports 2-dim or 3-dim str code as input types" ) elif (input_info["type"] in [float, int]) and ( input_info["dim"] not in [2, 3] ): raise ValueError( "RETAIN only supports 2-dim or 3-dim float and int as input types" ) # for code based input, we need Type # for float/int based input, we need Type, input_dim self.add_feature_transform_layer(feature_key, input_info) self.retain = nn.ModuleDict() for feature_key in feature_keys: self.retain[feature_key] = RETAINLayer(feature_size=embedding_dim, **kwargs) output_size = self.get_output_size(self.label_tokenizer) self.fc = nn.Linear(len(self.feature_keys) * self.embedding_dim, output_size)
[docs] def forward(self, **kwargs) -> Dict[str, torch.Tensor]: """Forward propagation. The label `kwargs[self.label_key]` is a list of labels for each patient. Args: **kwargs: keyword arguments for the model. The keys must contain all the feature keys and the label key. Returns: A dictionary with the following keys: loss: a scalar tensor representing the loss. y_prob: a tensor representing the predicted probabilities. y_true: a tensor representing the true labels. """ patient_emb = [] for feature_key in self.feature_keys: input_info = self.dataset.input_info[feature_key] dim_, type_ = input_info["dim"], input_info["type"] # for case 1: [code1, code2, code3, ...] if (dim_ == 2) and (type_ == str): x = self.feat_tokenizers[feature_key].batch_encode_2d( kwargs[feature_key] ) # (patient, event) x = torch.tensor(x, dtype=torch.long, device=self.device) # (patient, event, embedding_dim) x = self.embeddings[feature_key](x) # (patient, event) mask = torch.sum(x, dim=2) != 0 # for case 2: [[code1, code2], [code3, ...], ...] elif (dim_ == 3) and (type_ == str): x = self.feat_tokenizers[feature_key].batch_encode_3d( kwargs[feature_key] ) # (patient, visit, event) x = torch.tensor(x, dtype=torch.long, device=self.device) # (patient, visit, event, embedding_dim) x = self.embeddings[feature_key](x) # (patient, visit, embedding_dim) x = torch.sum(x, dim=2) # (patient, visit) mask = torch.sum(x, dim=2) != 0 # for case 3: [[1.5, 2.0, 0.0], ...] elif (dim_ == 2) and (type_ in [float, int]): x, mask = self.padding2d(kwargs[feature_key]) # (patient, event, values) x = torch.tensor(x, dtype=torch.float, device=self.device) # (patient, event, embedding_dim) x = self.linear_layers[feature_key](x) # (patient, event) mask = mask.bool().to(self.device) # for case 4: [[[1.5, 2.0, 0.0], [1.8, 2.4, 6.0]], ...] elif (dim_ == 3) and (type_ in [float, int]): x, mask = self.padding3d(kwargs[feature_key]) # (patient, visit, event, values) x = torch.tensor(x, dtype=torch.float, device=self.device) # (patient, visit, embedding_dim) x = torch.sum(x, dim=2) x = self.linear_layers[feature_key](x) # (patient, event) mask = mask[:, :, 0] mask = mask.bool().to(self.device) else: raise NotImplementedError # transform x to (patient, event, embedding_dim) if self.pretrained_emb != None: x = self.linear_layers[feature_key](x) x = self.retain[feature_key](x, mask) patient_emb.append(x) patient_emb = torch.cat(patient_emb, dim=1) # (patient, label_size) logits = self.fc(patient_emb) # obtain y_true, loss, y_prob y_true = self.prepare_labels(kwargs[self.label_key], self.label_tokenizer) loss = self.get_loss_function()(logits, y_true) y_prob = self.prepare_y_prob(logits) results = { "loss": loss, "y_prob": y_prob, "y_true": y_true, "logit": logits, } if kwargs.get("embed", False): results["embed"] = patient_emb return results
if __name__ == "__main__": from pyhealth.datasets import SampleEHRDataset samples = [ { "patient_id": "patient-0", "visit_id": "visit-0", # "single_vector": [1, 2, 3], "list_codes": ["505800458", "50580045810", "50580045811"], # NDC "list_vectors": [[1.0, 2.55, 3.4], [4.1, 5.5, 6.0]], "list_list_codes": [["A05B", "A05C", "A06A"], ["A11D", "A11E"]], # ATC-4 "list_list_vectors": [ [[1.8, 2.25, 3.41], [4.50, 5.9, 6.0]], [[7.7, 8.5, 9.4]], ], "label": 1, }, { "patient_id": "patient-0", "visit_id": "visit-1", # "single_vector": [1, 5, 8], "list_codes": [ "55154191800", "551541928", "55154192800", "705182798", "70518279800", ], "list_vectors": [[1.4, 3.2, 3.5], [4.1, 5.9, 1.7], [4.5, 5.9, 1.7]], "list_list_codes": [["A04A", "B035", "C129"]], "list_list_vectors": [ [[1.0, 2.8, 3.3], [4.9, 5.0, 6.6], [7.7, 8.4, 1.3], [7.7, 8.4, 1.3]], ], "label": 0, }, ] # dataset dataset = SampleEHRDataset(samples=samples, dataset_name="test") # data loader from pyhealth.datasets import get_dataloader train_loader = get_dataloader(dataset, batch_size=2, shuffle=True) # model model = RETAIN( dataset=dataset, feature_keys=[ "list_codes", "list_vectors", "list_list_codes", # "list_list_vectors", ], label_key="label", mode="binary", ) # data batch data_batch = next(iter(train_loader)) # try the model ret = model(**data_batch) print(ret) # try loss backward ret["loss"].backward()